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The Green-Schwarz (GS) superstring is reformulated in a physically equivalent way by embedding it into a larger system 
containing additional fermionic string- as well as bosonic harmonic variables and possessing additional gauge invariances. The 
main feature of the new GS superstring system is that it contains covariant and functionally independent first-class constraints 
only. This allows straightforward application of the BFV-BRST formalism for a manifestly superPoincar6-covariant canonical 
quantization. The corresponding BRST charge turns out to be of second rank and, therefore, the BFV-BRST action contains 
fourth-order ghost terms. 

1. Motivation 

This letter is aimed at providing a solution to the problem of  manifestly superPoincar6-covariant canonical 
quantization o f  superstrings in the Green-Schwarz  (GS) formulation [ 1 ]. The present study is a direct contin- 
uation and elaboration of  the formalism developed in ref. [ 2]. There a new type of  D = 10 harmonic superspace 
(cf. also ref. [ 3]) with two generations of  pure-gauge bosonic harmonic coordinates was introduced. It allowed 
to reduce the GS superstring to a system whose constraints were both Lorentz-covariant and functionally inde- 
pendent (irreducible, according to the terminology of  Batal in-Fradkin-Vilkovisky (BFV) [ 4,5 ]). Thus, the 
long-standing problem [6] of  covariant and irreducible separation of  the first- and second-class fermionic con- 
straints in the original GS superstring action was solved ~. However, in order to achieve simple canonical Dirac 
brackets among the superstring coordinates (due to the presence of  the covariant second-class constraints) we 
were obliged in ref. [2] to impose covariant gauge-fixing of  the fermionic x-gauge invariance (the first-class 
part of  the fermionic GS constraints). Thus part of  the superPoincar6 algebra (some translations and supersym- 
merry transformations),  although acting in a manifestly Lorentz-covariant way, became non-linearly realized. 

In this letter we propose to further enlarge the GS superstring. The new system has additional gauge invariance 
and contains besides the pure gauge bosonic harmonic coordinates of  refs. [ 2,3 ] additional pure gauge fermionic 
string variables. A crucial property of  this enlarged GS superstring is that it possesses covariant and irreducible 
first-class constraints only. Now, the application of  the covariant BFV-BRST quantization procedure [4,5] 
becomes straightforward and the whole superPoincar6 invariance is manifestly preserved. The only unusual 
feature is that the corresponding BRST charge contains higher-order (fifth power) ghost terms, i.e., it is of  rank 
two according to the BFV terminology [4,5]. 

In fact, there exists already in the literature a covariant superstring system [10] which contains first-class 
constraints only. However, these constraints form a reducible set with an infinite level of  reducibility [ 9,11,12 ]. 
The formalism proposed in ref. [ 11 ] for eliminating the higher ghost generations (ghosts for ghosts) in the BFV 

~t The covariant separation proposed in refs. [7,8] leads in fact to reducible (functionally dependent) sets of constraints. Application of 
the general BFV procedure [4] to treat these reducible constraints would force the level of reducibility to be oe [9] which renders the 
formalism ofrefs. [7,8] intractable. 
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treatment of the Siegel superstring [10] explicitly breaks Lorentz invariance at the level of the BFV-BRST 
action since it introduces there constant light-like Lorentz vectors which are not dynamical degrees of freedom. 

In the covariant harmonic superspace quantization [ 3 ] of D = 10 N =  1, 2 Brink-Schwarz (BS) superparticles 
[13] ("zero-mode" approximations of  the GS superstring) we were able to convert the 8N covariant second- 
class fermionic constraints into an equivalent set of covariant 4N first-class fermionic constraints thus refor- 
mulating the N =  1, 2 BS superparticle as a system with covariant first-class constraints only. Unfortunately, 
direct generalization of this procedure to the case of the GS superstring turned out to be impossible due to the 
complicated structure of the Poisson bracket (PB) relations among the fermionic superstring constraints [eqs. 
( 12 ) and (13 ) below ]. [ In the point-particle limit the RHS of ( 13 ) is zero, and the RHS of (12) does not contain 
any fermionic constraints. ] 

Our present approach is based on an idea first proposed in ref. [ 14] in a different context and further elabo- 
rated in great detail and generality in ref. [ 15 ]. This idea is that any irreducible set of  2K bosonic (fermionic) 
second-class constraints may be converted into the same number of  irreducible first-class constraints at the price 
of introducing additional pure gauge K bosonic (fermionic) degrees of freedom. The general formalism of ref. 
(15) cannot be directly applied to the GS superstring constraints [ eqs. (12)-(17)  below] since now we have 
both second- and first-class constraints and, moreover, the RHS of eq. (12) contains an unusual term quadratic 
in the constraints. Nevertheless, we find below an appropriate modification of all harmonic superstring con- 
straints by adding terms containing additional fermionic string variables .El (~) [ see eqs. ( 20) -  (23 ) below ] in 
such a way that this modified system becomes first-class only. 

2. Enlarged harmonic superstring action 

a V ± 1/2 The GS superstring action [ 1 ] in D =  10 harmonic superspace (X*'(~), 0a,~(~); u~,, -,~ ), written in hamil- 
tonian form, reads [ 2 ] 

S=SGs+ah . . . . .  ic , ( l )  

S G s = f d r } d , ( ~ a v O ~ X * ' + ~ P g A O ,  O A , ~ - - ~ A A T A - - ~ M , ~ D ~ ) ,  (2) 

Sh . . . . .  , c=  f d r  ( , ,a  a ,,,, q_,,T l/z,~a ,,±1/2 - d -  + \ , - . u ~ ¢ ~ - - v  . . . . . .  - A a b d a * ' - A  + - A y d  +a ) . (3) 

Here 0 A = OAo: (A = 1, 2) are two Majorana-Weyl (MW) spinors with equal (left-handed) chiralities (we are 
considering the case of  type liB GS superstring for definiteness). The bosonic harmonic variables entering the 
action (3) consist of  the following objects: 

(i) vg 1/2, two D =  10 (left-handed) MW spinors, 
(ii) u~, eight ( a =  1, ..., 8) D =  10 Lorentz vectors, 

which satisfy the constraints 

[ v+l/2g~I'~°epU+I/21rU-~ 1 B J t  ~ n/2(cru)Yava - 1/2]= _ 1, . l , t  v,~"ar"+-l/2l~'u~°~#"±l/2]~,, j ,,p = 0  , u,,a ut't' = C ~b . (4) 

C "b denotes the D =  8 charge-conjugation matrix. The group SO (8) × SO(l,  1 ) acts on u~,, v + 1/2 as an internal 
group of local rotations where u~ transform as SO (8) (s)-spinors whereas v + l/: carry charge _+ 1/2 under SO (1, 
1 ). Thus, the vectors u~ together with the composite identically light-like vectors 

u, +, =v±"~a, ,v  ±~'~ (5) 
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realize through (4)  the coset space S O ( l ,  9 ) / S O ( 8 )  × S O ( l ,  1 ) ~2. The light-like proper ty  of  u [  (5)  is due to 
the well-known D = 10 Fierz  ident i ty  (see e.g. ref. [ 1 ]) 

( a~,)'~/~( al')r6 + ( al,)/J'e ( al') "6 + ( crl,)r~( al')~a = 0 .  (6)  

The following nota t ions  for the constraints  appear ing in the act ions (2)  and (3)  are used: 

Z~ =H. .  ] + 4 i (  - 1 ,~4D"a'A ~A, ( r epa ramet r i za t ion  constra ints)  , (7)  

with 

H!~ - ~u  + ( _ 1 ).4 [X,~, + 2iOA auOj ] , 

DR--- - i p ~ a -  [ G " +  ( -  1)A(x'~+iOA(r~O/,)I(cruOA)" , (8)  

D~b=UT, 0/OU,,t,--U~O/OU~, D -+ = ~ ~ r +l/2a/a~,~v,+l/2_vj,-20/0v~,/2), 

D + a  = lit+ O/OUu a .~_ I ( V  - - 1 / 2 a  + ~ a O / O V  - - I / 2 )  , ( 9 )  

where u, + is as in (5) ,  er ± " + - a  u y ,  a ~=- a'u], and D ~,  D -  + D +a are the f i rs t -quantized forms o f  the purely 
harmonic  constraints  d ~b, d -  +, d +~ in (3) .  

The act ion ( 1 ) - ( 3 )  and the constraints  ( 7 ) - ( 9 )  are invar iant  under  global spacet ime supersymmetry  
t ransformat ions:  

8 ~ X V ( ~ ) = - i Z e . 4 a ' O . , ( ~ ) ,  8ss0.~(~)=CA, 8ssV+ '/2 ~---SssU~ = 0  . 
.4 

In the hami l ton ian  f ramework the corresponding supersymmetry  generators read 

Q~ = i d {  Q~(~)  , Q~(~)  - - i p ' ~  + [ ~*' + ( -  1 )A (X ' "  +iOAa'O;,)](a/,OA) ~ . 
- re  

All constraints  in (2)  and (3)  are first class except D~' (8)  which is a mixture  of  first and second class. AA ..... 
ely in (2)  and  (3)  are the corresponding Lagrange mult ipl iers .  

It was a l ready stressed in ref. [ 2] that  independence  o f  the harmonic  variables u{, v +~/2 on the string world- 
sheet pa ramete r  ~ does not  spoil the reparamet r iza t ion  invar iance  of  the harmonic  GS superstr ing ( 1 ) - (  3 ) since 
u;,, vff ,/2 are pure gauge degrees o f  freedom. Thei r  crucial role is to covar iant ly  and i r reducibly disentangle the 
first- and the second-class parts  of  the fermionic  constraints  D~ (8) :  

D~=(H+)- lg~ t , , ,+ l /2~o~n+l /2_ t_ l rr+x- l l r r t  +_t, - 1/2 \oe/--, + i/2 
I tl u } 1 J A b  T I l l  A ] I,l]/aO" ~ V ) t~Ab , (10) 

where H + = v + '/2/~A V + ~/2 is a Lorentz-scalar ,  or  inversely 

O + l / 2 a  U + I / 2 ( T a f f l A D A  (first-class generator  o f  the ~c-symmetry) 

G+l/2a=l(v-l/2aa~y+DA) (second class) . (11) 

The PB relat ions among 774, D~ in terms o f  (10) and (1 1 ) read 

{ O + ~/2~( ~), D + ,/2b( q ) }pB = - 2i8AB C~bH. + T , 8 (  ~ - rl ) 

_ 8 ( _  1)Afiaafi(~ ,~ [ , , ,+ l /2ar l+l /2b .a_ , , , ,+ l /2bFl+l /2a  i ~ a b , , , , + l / 2 c l ~ + l / 2 1  
~ *11 I. W A  atJ.4 ~ W A  .t".4 - -  "~ W A  * J A c  J 

+ 8ra'aG+)/2({)[(  - 1 )AOAB8'(~-- r/)] refG+,)/2(n ) , (12) 

A + l / 2 a b d  +1/2 {D~-'/za(4), G + ' / 2 ~ ( r / ) } p ~ = 4 ( - 1 )  O ~ ( ~ - r / ) R a  GAa , (13) 

~-~ A D= 10 harmonic superspace of this type with elementary light-like vectors u,~ was earlier introduced in ref. [ 16]. 
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{D + I/2 a ( ~ ) ,  T~(t/) }PB = 8 ( -- 1 )Ar~A~[D+ l / 2 a ( ~ )  6~, ( ~  - -  ~ )  + 1 (D~-l/2a) ' 6 ( ~  - -  71)] , 

{G + ,/2~(¢), TBO/) }pB = 4 (  - 1 )AfiA~[G+ '/2 ~ ( ¢ ) a ' ( { - -  t/) + (G + 1 /2a) ' a (~- - . ) ]  , 

{TA(g), Ta(q) }pB=8(--1)A aAa[ TA( g)a'( g--~I) + ½( TA)' C~( g--tl)] , 

{G + 1/2 a(~), G~ 1,2 b ( / / ) } P B  = ifi4eC ~H+ f i ( { -  tl), 

with the following notations: 

~1~ l /2a ~ ( D + I / 2 { y a O A )  , r a b c = l ) + l / 2 ~ T a ~ y b ~ y c P  - I / 2  , R ; l / 2 a b C - ~ r a d c ( l d - l / 2 r T b r y d { 7  + 0 ~ )  . 

10 March 1988 

( 1 4 )  

(15) 

(16) 

(17) 

(18) 

Let us now embed the system ( 1 ) - ( 3 )  into a larger system with additional gauge invariance such that the 
physical content of  the original GS superstring is preserved. To this end we propose the following enlarged GS 
action (written once again in hamil tonian form):  

S= fdT; i d~(~uOrXU+ ~PCdAO~OAa+i~--~OT~--~Aa--~AAf'AA A A -- Z.V*AV'A-'/2an+'/2--~My'/2aG+a'/2)A ~'Aa A 
--it 

+~h . . . . .  ic • (19) 

The new fermionic string variables ~ (~) obey according to (19) the canonical PB relations 

All constraints in (19) are now first class only and read 

~4 = T~I + 2 i (  A=~=,  - 1) - -A- -A~,  ( 2 0 )  

O.+l/Za=D~+l/2a-2i( -l~A°+l/2abc~l *'A --Ab--Ac= , (21) 

~]-,/2 ~ = G+ ~/2 ~ + (//~-) ~/2E~. (22) 

where R +~/2 .t,~ is the same as in (18 ). The proof  of  the first-class property of  the constraints ( 2 0 ) - (  22 ) heavily 
relies on the Fierz identity (6) .  Sh . . . . .  i¢ in (19) is the same as S. . . . . .  ~ (3) except for the constraint d ~b which 
is now modif ied to 

/c 

d ab =d ~' + i ~  f d~ ~3(~)~,A~ (~) . (23) 
-Tr 

The PB relations among the modif ied constraints ( 2 0 ) - ( 2 2 )  remain the same as the relations (13 ) - (  16 ) for 
the old constraints ( 7 ), (9),  ( 11 ) except for (12), ( 17 ): 

{/~Aq- l /2a(~) ,  /~ /~ 1/2 b ( , ) }  = __ 2iCabH7 TA8({-- q) 

- -  8(--1)AC~ABr~(~--q)[q/+1/2~+'/2b-- ~llA+l/2blel+l/2aa.~'A - -  ~'~t"~ab"t+l/2cl~+l/217*A *- 'Ac ] 

+ 16 ( - 1 )a 6ABS'({ -- q) [ rbCar~/"- ½ C ~' CaP] [ ( H  + ) l/2_%a0L,~_, ] 

+ 8 ( -  1)A 6A~6( {--q)rb~ar~S( d/dO[ (H+ )'/2 EAa]O&'/2 
A bce a d + 1/2 + 1/2 acd b e + 1/2 + 1/2 - 8 ( - 1 )  8A~a({--~l)r r ~ ( l l m )  ~,Ae(d/d{)~Ae +8(--1)AaAB6'(~--q)[r r~Oae (~)OA~ ({)] 

+ 8 ( -- 1 )A dABa({-- ~/)[ rL-"rb~d~ +'/2 (d/d~) ~+)/2 ] ,  (24) 

{4A+ l / 2 a ( ~ ) ,  G / ~  l / 2 b ( q ) } p B  = 0  . (25) 

Similarly, the PB relations involving the modif ied harmonic  constraints (23) do not change. 
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Clearly, the enlarged harmonic GS action (19) describes the same physical degrees of freedom as the original 
one (1). Indeed, the constrained system defined by (19) can be immediately reduced to the constrained system 
( 1 ) -  ( 3 ) after imposing the convariant gauge-fixing conditions ,E~ (~) = 0 corresponding to the new gauge invar- 
iances generated by the first-class constraints (22). 

To conclude this section let us point out that we can covariantly disentangle the fermionic variables _~ (~) 
into mutually canonically conjugated pairs: 

W k ~a ~0f,(~)= ~,.~,(~), ~(~)=w~.~(~), 

{~(~ ) ,  ~0~(q)}pB = { ~ ( ~ ) ,  (P~(r/)}pB =0,  {~0~(~), qi~(q)}pB = --idABCkid(~--r/) 

by employing the second generation of harmonics w~, ~ of refs. [2,3] which realize the coset space 
SO(8) /SU(4)  ×U(1 ): 

W~W'a=~,~W~=O, w~,~;~=C k; " 

Here C k~ denotes the D = 6 charge-conjugation matrix and under the group SU(4) × U (1) of local rotations w~, 
v~,~ transform as (4, + 1/2), (Z[, _ 1/2), respectively. 

3. BRST charge 

According to the general BFV formalism [4,5] the BRST charge QBRST of constrained systems, whose PB 
algebra of first-class constraints possesses structure "constants" non-trivially depending on the canonical vari- 
ables, may contain higher-order terms of power 2R + 1 (R = 2, 3, ...) in the ghosts and the ghost momenta unlike 
the usual case R = 1. The maximal value of R is called rank of the constrained system. The coefficient function 
in front of the ghost term of power 2R + 1 in QBRST is called Rth order structure function [4,5 ]. 

The above situation precisely occurs for the enlarged harmonic GS superstring [see the PB relations (24)]. 
Careful study of the general equations ofrefs.[4,5] (cf. e.g. eqs. (4.1.5), (4.1.6), (4.2.7), (4.2.8) of ref. [5]), 
recursively determining order by order in R the higher-order structure functions, show that in the present case 
all structure functions of order R/> 3 identically vanish. However, we find the following non-zero second-order 
structure functions of the constrained system (19): 

(2)  (2)  

U Dlm ~;';, U z ,m 9~; . ( 26 ) 

In (26) we employ the condensed notations of  refs. [ 4,5 ] where the indices T, D, G correspond to the constraints 
( 20) -  ( 22 ), respectively. Thus QBRST of ( 19 ) turns Out tO be of rank R = 2. 

The variables appearing in the expression for QBp, sr [eqs. (27 ) - (  30) below] are organized as follows: 
(i) constraints-  TA(~),/5+ l/2a(~), ~.+l/2a(~), ~ab, D - + ,  D+a; 
(ii) ghosts - CA(~),)~AI/2a(~), 0 ) 4 -  I / 2 a ( ~ ) ,  ?lab, q + - ,  ~-a.  

It is convenient to divide QBRST into three pieces a3: 

Q B R S T  - tO( l  ) 4 - / - 1 ( 2 )  "{ ' -Oh . . . . .  ic (27) - -  .'.'.'.'.'.'.'.'.'~strllag ~ ~-~strlng 

The last term on the RHS of (27) contains the contributions coming from the harmonic constraints (9) and 
(23): 

93 Here we skip the trivial abelian part of QBRST involving bilinears in the momenta of the Lagrange multipliers and of the antighosts. 
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Qh . . . . .  ic = itlab (19 ab + '1 aa Ol&lbd -- rl bdOl&l~a + tl- ~ Ol&l- b -- tl -- b Ol&l- a 

+ ~ i d~ ( ~ . A I I 2 a ~ I ~ X A b i l 2 - - Z A I / 2 b ~ I ~ ) ~ A a  1/2 "+ O) A 112a~/~O)Abll2--O.)AII2bB/~(.OAa 112) ) 

--g 

+i?l+-(D-+-- t l -ao/o t l -a- - l~Afd~(xAl /2a~/~XAl /2a+O)Al /2a~/~O)~l /2a) )+i t l -aD+a.  (28) 
--/r  

Thepiece ~smngt3(~ in (27) contains the contributions of the string constraints (20) - (22)  including the first-order 
structure functions: 

Q('~ - i ~mng - ~A d~ {CA 7"A "~-)~Aa l/2j~+ l12a .~_ [O)A 1/2a - 2 i (  -- 1) A (d/d~)(Z A l/2bXAbl/2~/~O)Aa 112) 

- 4 i (  1)Arb~er&'a(Z~bll2)'~'--ll2~lR""+ll2elt'~2+lt2~ - -  " , ~,4d ~twt't'lA ] ~ A a  j 

+ 4 i ~ (  -- l) A i d~ ([C'~CA + ¼i( -- 1)AH.~zx '/2~ZA,'/218/SCA --{C~ (OgA '/2~)' +R+ ~/2"b~zy,.'/2WX~/2 
- r e  

+ 2recarbca(H+ ),/2EAaXy,/2(Zyb,/2), + (d/d~) [ (HA+) , / 2 ~  ]ZY ,/2 bZyb,/2 }8/8~0y ~/2 a 

+ [C~ZA ,/2 ~ __ CA (ZA ~/2 ~), + 2~uX ,/2 hXyb,/2ZA ~/Z a __)~y ~/2 bXA ~/2 ~U+ 1/2 ~] 8/6Xy ~/2 a) .  (29) 

Here once again the notations (18) were used. Note the unusual form of the term involving ~+f2  in (29) which 
is non-linear in the ghosts [it is due to the term quadratic in the constraints on the RHS of (24)]. 

Finally, the piece n(2) in (27) incorporates the contribution of the non-vanishing second-order structure "~¢. str ing 

functions (26): 

/9(2) i • ~¢A (81~O)Ac  )~18(3)A 1/2C ~,r, ,~g=--4~ d~ {z;t/2a[X;al/2()~;bl/2 ) _ ( Z 1 f 2 ) , Z . I ~ , 2 ]  + ~ / 2 b  - , / 2  - 

+2ZY 1/2 ~..-~Aal/2.,,,-/~A l / 2 c R  A + cl/2delsIl~)O')k A--1/2d~18/80)) ~. A--1/2 e' t  , } I  

i a 1/2 /2 l/2b t l /2a 1/2 t 1/2 l/2b "{-'3~A4 .J dZ {cA[ZA '/2 ZA~ (8/809Xg)'(8/809A ) +ZY (ZYa ) ( 8 / 8 0 9 ~ b ) ( 8 / 8 ~  )'] 

__ 5 C,~X A , /2axAal /2(  ~) l~)O) ~bl/2) 8 /~jO) A l / 2 b }  . (30) 

Now, the explicit expression for QsRsv, ( 27 ) - (30) ,  provides the starting point for a manifestly superPoincar6- 
covariant second quantization of the GS superstring either in the BRST field theoretic formalism (17) or in the 
first-quantized function integral representation (the Polyakov formalism) [ 18]. The main conclusion from the 
present analysis is that the price to be paid for a manifestly superPoincar6-covariant quantization of the GS 
superstring is the appearance of fourth-order ghost terms in the BFV hamiltonian [4,5 ]: 

Huvv={Qu.sv ,  ~ } = ~  i d~ 7~a--4iA~(--1)A i d~[cj~)/~)gAq'-()~Tal/2)'S/8,,~yal/2"}-(OJAal/2)'~)/~)(DAal/2] 

+ ~ ~, i de [Z~-,/2 aZZ,/2 (8/8 ~-b~/2) ' (8/8 o~-,/2 b), +Z~-,/2 a(Z~)/2 ) , (8/80~y,)/2)( 8/8 ~-, /2 b),] . ( 31 ) 
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In ( 31 ) the B F V  gauge-f ix ing func t i on  ~v was chosen  in the  f o r m  ~v = Z~O/OCoA with  CoA be ing  the zero  m o d e s  of  

the  r e p a r a m e t r i z a t i o n  ghosts  cA (¢) .  
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Note added 

Afte r  submiss ion  o f  this pape r  it was rea l ized  [19]  that ,  by  tak ing  as f e r m i o n i c  first-class cons t ra in t s  the  

fo l lowing func t iona l ly  i n d e p e n d e n t  c o m b i n a t i o n :  

~ = ( H ~  ) - ' ( a a v  + '/2)"19~a'/2 + (H, + ) - ' (~IA a + tr"V-'/2)"0+~1/2 

ins tead  o f  the  or ig inal  first-class f e r m i o n i c  constraints/5~-~/2 a (21 ) and  0.4 +~/2 ~ (22),  the  PB algebra  (24 )  and  

( 2 5 ) radica l ly  s impl i f ies  and  QBRSX (27)  becomes first rank (i.e. the  h igher  ghost  t e rms  are  absent ) .  In the  la t ter  

case also the  man i fe s t  P a r i s i - S o u r l a s  O S p  (1, 1/2) s y m m e t r y  [20]  o f  HBFv (31 ) was expl ic i t ly  d e m o n s t r a t e d  in 
ref. [19] .  
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